

CREATION THROUGH SEPARATION

■ Laboratory scale electrodialzer for FORBLUE™ SELEMION

DW-Lab

The DW-Lab are miniaturized electrodialyzer units to be used in the laboratory.

These sets contain an electrodialyzer, rectier, pumps, tanks and all the accessories necessary to start experiments with SELEMION™ ion-exchange membranes.

Feature

- lons in solution can be separated.
- It is possible to freely set the movement amount of ions.
- It can respond flexibly to adjustment of desalination water and concentration change of raw water.
- It is easy to disassemble and clean.
- Depending on the experimental content, membrane exchange is possible.

- ※ In addition to the main body, a power supply for a rectifier and a pump is attached.
- ** The photograph is a prototype machine, it may be different from a mass production machine.

Application

Desalination in the food industry	Separation and purification of organic substances	Recycling of wastewater and recovery of valuables	
Soy sauce, Seasoning, Sugar,	Amino acids (glutamic acid etc.)	Etchant	
Dairy products, Juice,	Taurine, Chitosan	Plating solution	
Wine etc.	Gluconic acid	Rinse water etc.	

Specification

TYPE	DW-Lab		
MEMBRANE SIZE	80 x 130mm		
CELL PAIRS	5		
RECTIFIER OUTPUT	DC 18V / 2A		
SIZE	W300 x D200 x H400mm		
WEIGHT	10kg		
RECTIFIER INPUT	AC100V		

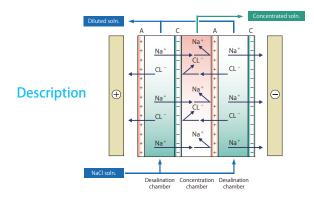
CREATION THROUGH SEPARATION

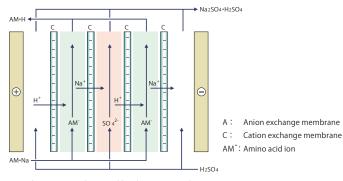
■ FORBLUE™ SELEMION

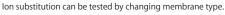
SELEMION™ is a hydrocarbon type ion-exchange membrane that has been developed and manufactured by AGC group. Since we entered the membrane business in 1950, we have made continuous developments as a pioneering company, and through this we have tried to expand the range of applications of membranes. On the basis of our long and wide-ranging experience, we are able to propose the optimum membrane process for each of our customers.

Cation Exchange Membranes	Product Name		CMVN	CMTE	HSF	CMF
	Characteristic		Standard	Strong	H ⁺ selective	High durability
			ED	ED	ED	ED
	Thickness		100	220	150	440
	Counterion		Na+	Na+	H+	H+
Burst Strength			200	1150	200	1000
Resistance			2.0	4.2	19	2.5
Transport			>0.97	>0.94		>0.95
Number						

Anion	ion Product Name		AMVN	DSVN	AAV	ASVN	AHO
Exchange			Standard	Low resistance	Low proton leakage	Monovalent- ion-selective	High temp. & Alkali-proof
Membranes			ED	DD	ED	ED	ED
			100	95	120	100	300
			CI ⁻	CI ⁻	SO ₄ ²⁻	CI ⁻	Br⁻
Burst Strength			250	150	300	200	1200
			2.0	1.1	6.4	4.0	20
			>0.95		>0.95	>0.95	>0.95


 $[\]ensuremath{\%}$ The data published in this catalog are subject to change without notice.


Summary


- An ion-exchange membrane is a sheet made of organic polymer materials.
- Membranes are basically classified into two categories: anion-exchange membranes and cation-exchange membranes.
- $\bullet \ \, \text{Electrodialysis is a method of desalination and concentration involving the application of a DC current. } \\$
- $\bullet \ \, \text{Electrodialysis does not require chemicals that are commonly used in ion-exchange resin tower regeneration}.$
- Electrodialysis can separate valuable organic materials from salt because it only permits ionic materials to pass through the membrane.

Precautions for applying solution on SELEMION $^{\mathtt{m}}$

Oils, suspended solids, surfactants, oxidants and ionized organic polymers may cause a decrease in the efficiency of the membrane.

 $[\]ensuremath{\mathrm{\%}}$ The values in these tables are only for reference, and are not guaranteed values.